Unit 3 Day 4
Discrete Probability
Distributions
(5-3) Binomial Distributions

A probability experiment that can be reduced to only 2 outcomes is considered a binomial experiment.

for ex: Flipping a coin (heads, tails)

Medical Experiment (effective, ineffective)

True/False questions

Games (Win, lose)

And many many others!

I. Binomial Formula

A binomial experiment must satisfy the following four requirements:

- 1. There must be a fixed # of trials
- 2. Each trial can only have two outcomes that will be considered a success or failure.
- 3. The outcomes of each trial must be independent of each other.
- 4. The probability of a success must remain the same for each trial.

I. Binomial Formula

The outcomes of a binomial experiment and the corresponding probabilities of these outcomes are called a binomial distribution.

NOTATION:

p = the numerical prob. of success

q = the numerical prob. of failure = (1-p)

n = number of trials

X = the number of successes in n trials

In a binomial experiment, the probability of exactly X successes in n trials is:

$$P(X) = \frac{n!}{(n-X)!X!} \cdot p^X \cdot q^{n-X}$$

Example

1.) A coin is tossed 3 times. Find the probability of getting

exactly 2 tails.
$$\rho = 0.5$$
 $q = 0.5$ $n = 3$ $\chi = 2$

exactly 2 tails.
$$\rho = 0.5$$
 $q = 0.5$ $n = 3$ $x = 2$

$$P(2) = \frac{(3!)}{(1! 2!)} (0.5)^{2} (0.5)^{4}$$

$$P(2) = 3 \cdot (0.5)^{2} (0.5)^{4}$$

$$P(2) = 0.375 \longrightarrow 37.5\%$$

Example

2.) A survey found that one out of five Americans say he or she has visited a doctor in any given month. If 10 people are selected at random, find the probability that exactly 3 will have visited a doctor

last month.
$$P = \frac{1}{5} = 0.2$$
 $N = 10$

$$Q = \frac{9}{5} = 0.8$$
 $X = 3$

$$P(3) = \frac{(10!)}{(7!3!)} (0.2)^3 (0.8)^7$$

$$P(3) = \frac{(10!)}{(7!3!)} (0.2)^3 (0.8)^7$$

$$P(3) = 120 \cdot (0.2)^3 (0.8)^7$$

$$P(3) = 0.2013 \longrightarrow 20.13 \%$$

Example

3.) If 23% of all doctors are internists, find the probability that in a group of 15 doctors, 4 are internists.

$$P=0.23 \qquad n=15$$

$$Q=0.77 \qquad X=4$$

$$P(4) = \frac{(15!)}{(11! 4!)} (0.23)^{4} (0.77)^{11}$$

$$P(4) = 1365 \cdot (0.23)^{4} (0.77)^{11}$$

$$P(4) = 0.2155 \longrightarrow 21.55 \%$$

Example

4.) A survey found that 30% of teenage consumers receive their spending money from part-time jobs. If 5 teenagers are selected at random, find the probability that at least 3 of them will have part-time P=0.3 9=0.7 n=5 X=3+4+5 jobs?

Hint: At least means find the P(3), P(4) and P(5) and then add them together for the total.

$$P(3) = \frac{(5!)}{(2!3!)}(0.3)^{3}(0.7)^{2} = 0.1323$$

$$P(4) = \frac{(5!)}{(1!4!)}(0.3)^{4}(0.7)^{7} = 0.02835$$

$$P(4) = \frac{(5!)}{(1!4!)}(0.3)'(0.7)' = 0.02835$$

$$P(5) = \frac{(5!)}{(0!5!)} (0.3)^{5} (0.7)^{\circ} = 0.00243$$

Calculator Directions:

TI-84

- 1.) Distr (2nd Vars)
- 2.) A: binompdf (n, p, x) "exactly"
- or B: binomcdf (n, p, x) "at most"

TI-Inspire

- 1.) spreadsheet icon
- 2.) menu
 - 5: probability
 - 5: distributions ->
 - D: binomial pdf "exactly"
- or E: binomial cdf (more than one)

Example: About 38% of all students get detention.

a.) What is the probability that in a sample of 15 students, exactly 2 have had detention?

What is the probability that in a sample of 15 students, at most 2 have had detention?

Sounds at binomcdf (15,0.38,2)= 0.0382
$$\rightarrow$$
 3.82%

c.) What is the probability that in a sample of 15 students, at least 2 have had detention?

Assignment:

Unit 3 Day 4 WS (purple; binomial distribution w/ calculator)

Working Model of Game Wednesday 3/11
Project Write up Friday 3/13
Unit 3 Test Friday 3/13